Skip to content

Deep Learning Book

  • Início
  • Capítulos
  • Cursos Online
  • Contato

Deep Learning Book

Em Português, Online e Gratuito

Tag: Transformers

Deep Learning Book

Capítulo 85 – Transformadores – O Estado da Arte em Processamento de Linguagem Natural

by

Transformadores (Transformers) representam uma arquitetura de Deep Learning que visa resolver tarefas sequence-to-sequence enquanto lida com dependências de longo alcance com facilidade. Esse não é um conceito fácil de compreender, mas ajudaremos você! Vamos iniciar agora uma sequência de capítulos baseados no artigo: Attention is All You Need (Atenção é tudo que você precisa). E …

Continue Reading
Deep Learning Book

Capítulo 77 – Modelo BERT Para Processamento de Linguagem Natural

by

BERT (Bidirectional Encoder Representations from Transformers) é um modelo de Deep Learning criado por pesquisadores do Google AI Language. O BERT causou um rebuliço na comunidade de aprendizado de máquina ao apresentar resultados de última geração em uma ampla variedade de tarefas de PLN (Processamento de Linguagem Natural), incluindo respostas automáticas ao banco de dados …

Continue Reading
Deep Learning Book

Capítulo 76 – O Que é BERT (Bidirectional Encoder Representations from Transformers)?

by

BERT (Bidirectional Encoder Representations from Transformers) é o algoritmo de aprendizado profundo (Deep Learning) do Google para PLN (Processamento de Linguagem Natural). Ajuda computadores e máquinas a entender a linguagem como nós, humanos, fazemos. Simplificando, o BERT pode ajudar o Google a entender melhor o significado das palavras nas consultas no mecanismo de busca. Por …

Continue Reading

Capítulos Recentes

  • Capítulo 35 – A Matemática do Problema de Dissipação do Gradiente em Deep Learning
  • Capítulo 34 – O Problema da Dissipação do Gradiente
  • Capítulo 33 – Por que as Redes Neurais Profundas São Difíceis de Treinar?
  • Capítulo 32 – Como Uma Rede Neural Artificial Encontra a Aproximação de Uma Função
  • Capítulo 31 – As Redes Neurais Artificiais Podem Computar Qualquer Função?
  • Capítulo 30 – Variações do Stochastic Gradient Descent – Hessian Optimization e Momentum
  • Capítulo 29 – Definindo o Tamanho do Mini-Batch
  • Capítulo 28 – Usando Early Stopping Para Definir o Número de Épocas de Treinamento
  • Capítulo 27 – A Taxa de Aprendizado de Uma Rede Neural
  • Capítulo 26 – Como Escolher os Hiperparâmetros de Uma Rede Neural

Buscar

Podcast DSA

© 2025 Data Science Academy - www.datascienceacademy.com.br