Skip to content

Deep Learning Book

  • Início
  • Capítulos
  • Cursos Online
  • Contato

Deep Learning Book

Em Português, Online e Gratuito

Deep Learning Book

Capítulo 1 – Deep Learning e a Tempestade Perfeita

by

O interesse pela Aprendizagem de Máquina (Machine Learning) explodiu na última década. O mundo a nossa volta está passando por uma transformação e vemos uma interação cada vez maior das aplicações de computador com os seres humanos. Softwares de detecção de spam, sistemas de recomendação, marcação em fotos de redes sociais, assistentes pessoais ativados por voz, carros autônomos, smartphones com reconhecimento facial e muito mais.

E o interesse por Machine Learning se mostra ainda mais evidente pelo número cada vez maior de conferências, meetups, artigos, livros, cursos, buscas no Google e profissionais e empresas procurando compreender o que é e como usar aprendizagem de máquina, embora muitos ainda confundem o que podem fazer com o que desejam fazer. Não há como ficar indiferente a esta revolução trazida pela aprendizagem de máquina e, segundo o Gartner, até 2020 todos os softwares corporativos terão alguma funcionalidade ligada a Machine Learning.

Fundamentalmente, Machine Learning é a utilização de algoritmos para extrair informações de dados brutos e representá-los através de algum tipo de modelo matemático. Usamos então este modelo para fazer inferências a partir de outros conjuntos de dados. Existem muitos algoritmos que permitem fazer isso, mas um tipo em especial vem se destacando, as redes neurais artificiais.

As redes neurais artificiais não são necessariamente novas, existem pelo menos desde a década de 1950. Mas durante várias décadas, embora a arquitetura desses modelos tivesse evoluído, ainda faltavam ingredientes que fizessem os modelos realmente funcionar. E esses ingredientes surgiram quase ao mesmo tempo. Um deles você já deve ter ouvido: Big Data. O volume de dados, gerado em variedade e velocidade cada vez maiores, permite criar modelos e atingir altos níveis de precisão. Mas ainda falta um ingrediente. Faltava! Como processar grandes modelos de Machine Learning com grandes quantidades de dados? As CPUs não conseguiam dar conta do recado.

Foi quando os gamers e sua avidez por poder computacional e gráficos perfeitos, nos ajudaram a encontrar o segundo ingrediente: Programação Paralela em GPUs. As unidades de processamento gráfico, que permitem realizar operações matemáticas de forma paralela, principalmente operações com matrizes e vetores, elementos presentes em modelos de redes neurais artificias, formaram a tempestade perfeita, que permitiu a evolução na qual nos encontramos hoje: Big Data + Processamento Paralelo + Modelos de Aprendizagem de Máquina = Inteligência Artificial.

A unidade fundamental de uma rede neural artificial é um nó (ou neurônio matemático), que por sua vez é baseado no neurônio biológico. As conexões entre esses neurônios matemáticos também foram inspiradas em cérebros biológicos, especialmente na forma como essas conexões se desenvolvem ao longo do tempo com “treinamento”. Em meados da década de 1980 e início da década de 1990, muitos avanços importantes na arquitetura das redes neurais artificias ocorreram. No entanto, a quantidade de tempo e dados necessários para obter bons resultados retardou a adoção e, portanto, o interesse foi arrefecido, com o que ficou conhecimento como AI Winter (Inverno da IA).

No início dos anos 2000, o poder computacional expandiu exponencialmente e o mercado viu uma “explosão” de técnicas computacionais que não eram possíveis antes disso. Foi quando o aprendizado profundo (Deep Learning) emergiu do crescimento computacional explosivo dessa década como o principal mecanismo de construção de sistemas de Inteligência Artificial, ganhando muitas competições importantes de aprendizagem de máquina. O interesse por Deep Learning não para de crescer e hoje vemos o termo aprendizado profundo sendo mencionado com frequência cada vez maior e soluções comerciais surgindo a todo momento.

Este livro online, gratuito e em português, é uma iniciativa da Data Science Academy para ajudar aqueles que buscam conhecimento avançado e de qualidade em nosso idioma. Serão 100 capítulos, publicados no formato de posts. Desta forma, esperamos contribuir para o crescimento do Deep Learning e Inteligência Artificial no Brasil.

Nos acompanhe nesta incrível jornada!

Equipe DSA

www.datascienceacademy.com.br

 

Post navigation

Previous Post:

Capítulo 100 – Machine Learning – Guia Definitivo – Parte 10

Next Post:

Capítulo 2 – Uma Breve História das Redes Neurais Artificiais

Capítulos Recentes

  • Capítulo 35 – A Matemática do Problema de Dissipação do Gradiente em Deep Learning
  • Capítulo 34 – O Problema da Dissipação do Gradiente
  • Capítulo 33 – Por que as Redes Neurais Profundas São Difíceis de Treinar?
  • Capítulo 32 – Como Uma Rede Neural Artificial Encontra a Aproximação de Uma Função
  • Capítulo 31 – As Redes Neurais Artificiais Podem Computar Qualquer Função?
  • Capítulo 30 – Variações do Stochastic Gradient Descent – Hessian Optimization e Momentum
  • Capítulo 29 – Definindo o Tamanho do Mini-Batch
  • Capítulo 28 – Usando Early Stopping Para Definir o Número de Épocas de Treinamento
  • Capítulo 27 – A Taxa de Aprendizado de Uma Rede Neural
  • Capítulo 26 – Como Escolher os Hiperparâmetros de Uma Rede Neural

Buscar

Podcast DSA

© 2025 Data Science Academy - www.datascienceacademy.com.br