Skip to content

Deep Learning Book

  • Início
  • Capítulos
  • Cursos Online
  • Contato

Deep Learning Book

Em Português, Online e Gratuito

Tag: Matemática

Deep Learning Book

Capítulo 61 – A Matemática dos Variational Autoencoders (VAEs)

by

No capítulo anterior, fornecemos a seguinte visão geral intuitiva: Os VAEs são Autoencoders que codificam entradas como distribuições em vez de pontos e cuja “organização” do espaço latente é regularizada restringindo as distribuições retornadas pelo codificador a estarem próximas de um gaussiano padrão. Neste capítulo, forneceremos uma visão matemática dos VAEs que nos permitirá justificar …

Continue Reading
Deep Learning Book

Capítulo 57 – Os Detalhes Matemáticos das GANs (Generative Adversarial Networks)

by

Neste capítulo vamos concluir nosso estudo das GANs com os detalhes matemáticos, antes de avançar para outra arquitetura de Deep Learning que estudaremos na sequência. Estamos considerando que você leu os capítulos anteriores sobre GANs. A modelagem de redes neurais requer essencialmente definir duas coisas: uma arquitetura e uma função de perda. Já descrevemos a …

Continue Reading
Deep Learning Book

Capítulo 56 – Modelos Generativos – O Diferencial das GANs (Generative Adversarial Networks)

by

Neste capítulo discutiremos o funcionamento dos modelos generativos, o principal diferencial nas GANs (Generative Adversarial Networks). Estamos considerando que você leu o capítulo anterior. Suponha que estamos interessados ​​em gerar imagens quadradas em preto e branco de cães com um tamanho de n por n pixels. Podemos remodelar cada dado como um vetor dimensional N …

Continue Reading
Deep Learning Book

Capítulo 53 – Matemática na GRU, Dissipação e Clipping do Gradiente

by

A capacidade da rede GRU de manter dependências ou memória de longo prazo decorre dos cálculos na célula na GRU para produzir o estado oculto. As LSTMs têm dois estados diferentes passados entre as células – o estado da célula e o estado oculto, que carregam a memória de longo e curto prazo, respectivamente – …

Continue Reading
Deep Learning Book

Capítulo 50 – A Matemática da Dissipação do Gradiente e Aplicações das RNNs

by

No Capítulo 34 nós discutimos sobre o problema da dissipação do gradiente e a dificuldade em treinar as redes neurais artificiais. Com as RNNs esse problema é ainda mais acentuado e por isso vamos agora estudar A Matemática da Dissipação do Gradiente e Aplicações das RNNs e compreender matematicamente porque o problema acontece. Mencionamos anteriormente …

Continue Reading
Deep Learning Book

Capítulo 35 – A Matemática do Problema de Dissipação do Gradiente em Deep Learning

by

Vamos continuar a discussão iniciada no capítulo anterior. Para entender porque o problema da dissipação do gradiente ocorre, vamos considerar a rede neural profunda mais simples: uma com apenas um único neurônio em cada camada. Aqui está uma rede com três camadas ocultas:     Aqui, w1, w2,… são os pesos, b1, b2,… são os …

Continue Reading

Capítulos Recentes

  • Capítulo 25 – Inicialização de Pesos em Redes Neurais Artificiais
  • Capítulo 24 – Expandir Artificialmente os Dados de Treinamento
  • Capítulo 23 – Como Funciona o Dropout?
  • Capítulo 22 – Regularização L1
  • Capítulo 21 – Afinal, Por Que a Regularização Ajuda a Reduzir o Overfitting?
  • Capítulo 20 – Overfitting e Regularização – Parte 2
  • Capítulo 19 – Overfitting e Regularização – Parte 1
  • Capítulo 18 – Entropia Cruzada Para Quantificar a Diferença Entre Duas Distribuições de Probabilidade
  • Capítulo 17 – Cross-Entropy Cost Function
  • Capítulo 16 – Algoritmo Backpropagation em Python

Buscar

Podcast DSA

© 2022 Data Science Academy - www.datascienceacademy.com.br