Skip to content

Deep Learning Book

  • Início
  • Capítulos
  • Cursos Online
  • Contato

Deep Learning Book

Em Português, Online e Gratuito

Tag: Redes Neurais Convolucionais

Deep Learning Book

Capítulo 10 – As Principais Arquiteturas de Redes Neurais

by

O Aprendizado de Máquina (Machine Learning) é necessário para resolver tarefas que são muito complexas para os humanos. Algumas tarefas são tão complexas que é impraticável, senão impossível, que os seres humanos consigam explicar todas as nuances envolvidas. Então, em vez disso, fornecemos uma grande quantidade de dados para um algoritmo de aprendizado de máquina …

Continue Reading
Deep Learning Book

Capítulo 47 – Reconhecimento de Imagens com Redes Neurais Convolucionais em Python – Parte 4

by

Vejamos como implementar nosso modelo de Rede Neural Convolucional que vai aprender a diferença nas imagens de cães e gatos e quando apresentarmos novas imagens ao modelo, ele será capaz de prever se a imagem é de um cão ou gato de forma automática. O Jupyter Notebook completo está disponível com os demais arquivos do …

Continue Reading
Deep Learning Book

Capítulo 46 – Reconhecimento de Imagens com Redes Neurais Convolucionais em Python – Parte 3

by

Uma das principais dúvidas de quem está iniciando em Machine Learning e se depara com as Redes Neurais Convolucionais, é sobre como ocorre o aprendizado dos parâmetros (aquilo que o algoritmo realmente aprende durante o treinamento). O que exatamente está sendo feito quando apresentamos uma imagem a um algoritmo de Rede Neural Convolucional? Sabemos que …

Continue Reading
Deep Learning Book

Capítulo 44 – Reconhecimento de Imagens com Redes Neurais Convolucionais em Python – Parte 1

by

Nossa tarefa é simples: vamos fornecer a um modelo de Deep Learning uma imagem e o modelo terá que classificar se a imagem é de um cachorro ou gato! Parece fácil, não? Na verdade, não! Para que isso funcione precisamos construir e treinar um modelo de Deep Learning, o que envolve conhecimentos de Matemática, Estatística, …

Continue Reading
Deep Learning Book

Capítulo 43 – Camadas de Pooling em Redes Neurais Convolucionais

by

Além das camadas convolucionais que acabamos de descrever nos capítulos anteriores, as redes neurais convolucionais também contêm camadas de agrupamento (ou Pooling). Camadas de Pooling são geralmente usadas imediatamente após camadas convolucionais e o que fazem é simplificar as informações na saída da camada convolucional. Vejamos o que são e como funcionam as Camadas de …

Continue Reading
Deep Learning Book

Capítulo 42 – Compartilhamento de Pesos em Redes Neurais Convolucionais

by

Vamos continuar estudando Deep Learning e investigar como funciona o Compartilhamento de Pesos em Redes Neurais Convolucionais. Já dissemos que cada neurônio tem um viés e pesos 5 × 5 conectados ao seu campo receptivo local. O que eu não mencionamos é que vamos usar os mesmos pesos e vieses para cada um dos 24 …

Continue Reading
Deep Learning Book

Capítulo 41 – Campos Receptivos Locais em Redes Neurais Convolucionais

by

Vamos estudar em detalhes a partir de agora as Redes Neurais Convolucionais, uma das principais arquiteturas de Deep Learning, amplamente usada em Visão Computacional. E começaremos compreendendo o que são os Campos Receptivos Locais. Mas antes, afinal, o que é Visão Computacional, amplamente usada em aplicações de Inteligência Artificial? O Que é Visão Computacional? Imagine …

Continue Reading
Deep Learning Book

Capítulo 40 – Introdução às Redes Neurais Convolucionais

by

Nos primeiros capítulos deste livro ensinamos nossas redes neurais a fazer um bom trabalho reconhecendo imagens de dígitos manuscritos:     Fizemos isso usando redes nas quais camadas adjacentes são totalmente conectadas umas às outras. Ou seja, todos os neurônios da rede estão conectados a todos os neurônios em camadas adjacentes:     Em particular, …

Continue Reading

Capítulos Recentes

  • Capítulo 25 – Inicialização de Pesos em Redes Neurais Artificiais
  • Capítulo 24 – Expandir Artificialmente os Dados de Treinamento
  • Capítulo 23 – Como Funciona o Dropout?
  • Capítulo 22 – Regularização L1
  • Capítulo 21 – Afinal, Por Que a Regularização Ajuda a Reduzir o Overfitting?
  • Capítulo 20 – Overfitting e Regularização – Parte 2
  • Capítulo 19 – Overfitting e Regularização – Parte 1
  • Capítulo 18 – Entropia Cruzada Para Quantificar a Diferença Entre Duas Distribuições de Probabilidade
  • Capítulo 17 – Cross-Entropy Cost Function
  • Capítulo 16 – Algoritmo Backpropagation em Python

Buscar

Podcast DSA

© 2022 Data Science Academy - www.datascienceacademy.com.br